PROF.DR. SAİT HALICIOĞLU    
Adı : SAİT
Soyadı : HALICIOĞLU
E-posta : halici@ankara.edu.tr, saithalicioglu@gmail.com
Tel : 0312 212 67 20 Ext 1190
Ünvan : PROF.DR.
Birim : FEN FAKÜLTESİ
Bölüm : MATEMATİK BÖLÜMÜ
ABS Adresi:https://abs.ankara.edu.tr/sait-halicioglu
Kişisel Akademik Bilgiler

EĞİTİM:

Lisans:  Ankara Üniversitesi Fen Fakültesi Matematik Bölümü  (1978-1982)

Yüksek Lisans: Gazi Üniversitesi Fen Bilimleri Enstitüsü Matematik Anabilim Dalı (1984-1986)

Doktora:  Wales Üniversitesi Aberystwyth Matematik Bölümü  (1988-1992)

 

AKADEMİK/MESLEKTE DENEYİM:

- Gazi Üniversitesi Fen Bilimleri Enstitüsü Araştırma Görevlisi  (1984-1987)

- Ankara Üniversitesi Fen Fakültesi Matematik Bölümü Araştırma Görevlisi  (1987-1995)

- Ankara Üniversitesi Fen Fakültesi Matematik Bölümü Doç. Dr. (1995-2000)

- Ankara Üniversitesi Fen Fakültesi Matematik Bölümü Prof. Dr. (2000- )

 

ARAŞTIRMA ALANLARI:

Grup Gösterimleri, Halkalar ve Modüller Teorisi

 

YAYINLAR:

-Halıcıoğlu, S. "Perfect Systems in G_2",  Riv. Mat. Univ. Parma, 5(2):237-247, 1993.

-Halıcıoğlu, S. and Morris, A.O.  "Specht Modules for Weyl groups", Contributions to Algebra and Geometry, 34(2): 257-276, 1993.

-Halıcıoğlu, S. "Additional Specht Modules for Weyl Groups", Hacettepe Bull. Nat. Sci. Eng. , (23): 23-29, 1994.

-Halıcıoğlu, S.  "A Basis for Specht Modules for Weyl Groups", Turkish J.Math.,18(3): 311-326, 1994.

-Halıcıoğlu, S.  "The Garnir Relations for Weyl Groups", Math.Japon. 40(2):339-342,1994.

-Halıcıoğlu, S. "Extended subsystems of root systems", Turkish J.Math., 19(1): 62-67, 1995.

-Halıcıoğlu, S.  "Specht Modules for Finite Reflection Groups", Glasgow Math.J., 37(3): 279-287, 1995.

-Halıcıoğlu, S.  "Submodules of Specht Modules for Weyl Groups", Proc. Edinburgh Math. Soc. 39(1): 43-50, 1996.

-Halıcıoğlu, S.  "Specht Modules for Finite Groups", Math. Slovaca, 49 (4), 425-431, 1999.

-Halıcıoğlu, S.  "Grup Gösterimleri I", A.Ü.Fen Fak Dön. Ser. İşl. Yay. No:52, 1999.

-Başer, M. and Halıcıoğlu, S.  "The representations of finite reflection groups", Mat. Vesnik, 56 (3-4), 105-114, 2004.

-Agayev, N.  Halıcıoğlu, S. and Harmanci, A., "On symmetric modules", Riv.Mat.Univ.Parma (8) 2 (2009), 91-99.

-Agayev,N.  Harmanci, A. and Halıcıoğlu, S. " Extended Armendariz Rings", Algebras Groups Geom., 26(4)(2009), 343-354.

-Agayev,N.  Güngöroğlu, G.  Harmanci, A. and Halıcıoğlu, S., "Abelian Modules", Acta Math. Univ. Comeninae, 8(2)(2009), 235-244.

-Agayev,N.  Halıcıoğlu, S. and Harmanci, A. " On Reduced Modules",  Commun. Fac. Sci. Univ. Ank. Series A1, 58(1)(2009), 9-16.

-Inankil, H. Halıcıoğlu, S. and Harmanci, A. " On a Class of Lifting Modules", Vietnam J. Math., 38:2(2010), 189-201.

-Agayev,N.  Harmanci, A. and Halıcıoğlu, S. " On Abelian Rings", Turk. J. Math., 34, (2010), 465-474.

-Agayev, N.  Güngöroğlu, G.  Harmanci, A. and Halıcıoğlu, S. "Central Armendariz Rings", Bull. Malays. Math. Sci. Soc. (2) 34(1) (2011), 137-145.

-Inankil, H., Halıcıoğlu, S. and Harmanci, A., " A Generalization of Supplemented Modules", Algebra Discrete Math., 11(1)(2011), 59-74.

-Ungor, B., Agayev, N., Halıcıoğlu, S. and Harmanci, A., " On Principally Quasi-Baer Modules", Albanian J. Math. 5(3) (2011), 165-173.

-Kafkas, G., Ungor, B, Halıcıoğlu, S. and Harmanci, A., " A Generalization of Symmetric Rings", Algebra Discrete Math., 12(2)(2011), 72-84.

-Ungor, B., Halıcıoğlu, S. and Harmanci, A., " Extensions of Baer and Principally Projective Modules", GU J Sci., 25(4)(2012), 863-867.

-Agayev, N., Halıcıoğlu, S. and Harmanci, A., " On Rickart Modules", Bulletin of the Iranian Mathematical Society, 38(2) (2012), 433-445.

-Kose, H., Ungor, B and Halıcıoğlu, S., "A Generalization of Reduced Rings", Hacet. J. Math. Stat., 41 (5) (2012), 689-696.

-Ungor, B, Kafkas, G., Halıcıoğlu, S. and Harmanci, "Some Properties of Rickart Modules", Commun. Fac. Sci. Univ. Ank. Series A1, 61(2)(2012), 1-8.

-Ungor, B., Kurtulmaz, Y.., Halıcıoğlu, S. and Harmanci, A., " Dual $pi$-Rickart Modules", Revista Colombiana de Matemáticas, (46) (2) (2012), 167-180.

-Arıkan, A. ve Halıcıoğlu, S., "Soyut Matematik", Palme Yayınları, Ankara, 2012.

-Ungor, B., Halıcıoğlu, S., Kamal M. A. and Harmanci, A., " Strongly Large Module Extensions", An. Ştiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 59(2) (2013), 431-452.

-Ungor, B and Halıcıoğlu, S., " Strongly Extending Modules", Hacet. J. Math. Stat., 42 (5) (2013), 465-478.

-Gurgun, O., Halıcıoğlu, S. and Harmanci, A., "Quasipolar Subrings of 3x3 Matrix Rings", An. S t. Univ. Ovidius Constanta, 21(3)(2013), 133-146.

-Kose, H., Ungor, B and Halıcıoğlu, S. and Harmanci, A. "Quasi-Reduced Rings", Acta Univ. Apulensis Math. Inform., 34 (2013), 57-68.

-Ungor, B, Halıcıoğlu, S., Kose, H. and Harmanci, A. "Rings in which every nilpotent is central", Algebras Groups Geom., 30(1)(2013), 1-18.

-Ungor, B., Agayev, N., Halıcıoğlu, S. and Harmanci, A., "Endo-Principally Projective Modules", Novi Sad J. Math., 43(1)(2013), 41-49.

-Ungor,B., Kurtulmaz Y., Halıcıoğlu,S. and  Harmancı, A. "On Generalized Principally Quasi-Baer Modules", Bol. Mat. 20(1) (2013), 51--62.

-Buhphang, A.M., Halıcıoğlu, S., Harmanci, A., Singh, K.H., Kose, H.Y. and Rege, M.B., "On Rigid Modules", East-West J. of Mathematics, 15(1) (2013), 71-85.

-Ungor, B., Halıcıoğlu, S. and Harmanci, A., "On A Class of -Supplemented Modules",   Bull. Malays. Math. Sci. Soc. (2) 37(3) (2014), 703–717

-Ungor, B.  Halıcıoğlu, S.  Harmanci;A.  “A Generalization of Rickart Modules”, Bull. Belg. Math. Soc. Simon Stevin , 21 (2) (2014), 303-318.

-Ungor, B., Halıcıoğlu, S. and Harmanci, A., "On a Class of -Supplemented Modules", in Ring Theory and Its Applications, Contemporary Mathematics, vol. 609, Amer. Math. Soc., Providence, RI, 2014, pp. 123-136.

-Kose, H., Ungor, B and Halıcıoğlu, S. and Harmanci, A. " A Generalization of Reversible Rings", Iran. J. Sci. Technol. Trans. A Sci.,  38(1)(2014) 38, 43-48.

-Halıcıoğlu, S.  Gurgun,O. and  Harmanci, A.  “Nil-quasipolar Rings”, Boletín de la Sociedad Matemática Mexicana,  20(1)(2014), 29-38.

-Halıcıoğlu, S.  Gurgun, O.  and Harmanci, A.  “Strong J-cleanness of formal matrix rings”,  Advanced Studies in Contemporary Mathematics (Kyungshang),, 24(4)(2014), 483-498.

-Argün, Z; Arıkan, A.; Bulut S. ve Halıcıoğlu, S., "Temel Matematik Kavramların Künyesi", Gazi Kitabevi, Ankara, 2014.

-Guner, E. and Halıcıoğlu, S. “Generalized Rigid Modules”, Revista Colombiana de Matemáticas, (48) (1) (2014), 111-123.

-Ungor, B.,  Gurgun, O., Halıcıoğlu, S. and Harmanci, A., "Feckly Reduced Rings", Hacet. J. Math. Stat., 44 (2) (2015), 375 – 384.

-Arıkan, A. ve Halıcıoğlu, S., "Cebire Giriş",  Palme Yayınları, Ankara, 2015.

-Agayev, N., Halıcıoğlu, S. and Harmanci, A.,  Ungor, B.,  "Modules which are Reduced over their Endomorphism Rings",  Thai Journal of Mathematics, 13(1) (2015), 177–188.

-Ungor, B., Kurtulmaz, Y.., Halıcıoğlu, S. and Harmanci, A., "Symmetric modules over their endomorphism rings",  Algebra Discrete Math. 19(2)(2015), 283-294.

-Gürgün, O. Halıcıoğlu, S. and Üngör, B. “A Subclass of Strongly Clean Rings”, Commun. Math. 23(2015), 13-31.

-Calci, M. Halıcıoğlu, S. and Harmanci, A. “A Class of J-quasipolar Rings”, Journal of Algebra and Related Topics, Vol. 3, No 2, (2015), pp 1-15 

-Ungor, B., Halıcıoğlu, S. and Harmanci, A., “Rickart modules relative to singular submodule and dual Goldie torsion theory”, J. Algebra Appl.,15(8)(2016), 1650142. 

-Chen, H.  Gurgun, O.  Halıcıoğlu, S. and Harmanci, A. “Rings in which nilpotents belong to Jacobson radical”, An. Ştiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.)  LXII(2) (2016), 595-606.

-Ungör, B.   Halıcıoğlu, S.  and Harmancı,, A. “Modules in which Inverse Images of Some Submodules are Direct Summands”,  Comm. Algebra,44(4)(2016), 1496-1513,

-Chen, H.  Kose,H. and  Halıcıoğlu, S.  “Decomposition of 2x2 matrices over local rings”,  Publications de l'Institut Mathematique, 100(114) (2016), 287–298.

-Calci, Mete Burak; Chen, Huanyin; Halicioglu, Sait; Harmanci, Abdullah; “Reversibility of Rings with Respect to the Jacobson Radical”, Mediterr. J. Math. 14(3) (2017), 14:137.

-Calci, T. Halıcıoğlu, S. and Harmanci, A. “A Generalization of J-quasipolar Rings”, Miskolc Mathematical Notes, 18(1) (2017). 155–165.

-Calci, T. Halıcıoğlu, S. and Harmanci, A. “Modules Having Baer Summands”, Communications in Algebra, 45(11)(2017), 4610-4621.

-Ungor, B. Chen, H.  and Halıcıoğlu, S.  “Very Clean Matrices over Local Rings”, An. Ştiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), LXIII(3) (2017), 543-552.

-Ungör, B.   Halıcıoğlu, S.  and Harmancı,, A. “A Dual Approach to the Theory of Inverse Split Modules”,  J. Algebra Appl. 17(8)(2018), 1850148.

-Gurgun, O., Halıcıoğlu, S. and Harmanci, A., "Quasipolarity of special Morita context rings", Miskolc Mathematical Notes,19(1) (2018), 273-289. DOI: 10.18514/MMN.2018.2288

- Halıcıoğlu, S., Harmancı, A.  and Ungor, B., “A Class of Abelian Rings”,  Boletin de Matematicas, 25(1)(2018),  27-37. 

-Calci, T. Halıcıoğlu, S. and Harmanci, A. “Symmetric Property of Rings with Respect to the Jacobson Radical”, Commun. Korean Math. Soc. 34 (2019), No. 1, pp. 43-54.

-Calci, M. B. Halıcıoğlu, S. and Harmanci, A  “Strong  P-cleanness of Trivial Morita contexts”, Commun. Korean Math. Soc. 34 (2019), No. 4, pp. 1069-1078.

-Kurtulmaz, Y.  Halıcıoğlu, S.  Harmanci, A and Chen, H,  “Rings in which elements are a sum of a central and a unit element”, Bull. Belg. Math. Soc. Simon Stevin , 25 (4) (2019), 619-631.

-Dolinar,G.  Halıcıoğlu, S., Harmancı, A. Kuzma, B. Marovt, J. and Ungör, B. “Preservers of the left-star and right-star partial orders”, Linear Algebra Appl. 587 (2020), 70–91.

-Ungor, B.   Halıcıoğlu, S., Harmancı, A. and Marovt, J.  “On Properties of the Minus Partial Order in Regular Modules", Publ. Math. Debrecen, 96/1-2 (2020), 149–159.

-Ungor, B.   Halıcıoğlu, S., Harmancı, A. and Marovt, J.  “Partial orders on the power sets of Baer rings”,  J. Algebra Appl., 19(1)(2020) 2050011.

-Ungor, B.   Halıcıoğlu, S. and Harmancı, A.,  “Shorted operators with respect to a partial order in a dual module”, Operators and Matrices, 14(1) (2020), 175–187.

-Ungor, B.   Halıcıoğlu, S., Harmancı, A. and Marovt, J.  “Minus Partial Order in Regular modules", Comm. Algebra, 48 (2020), no. 10, 4542–4553.

-Ungor, B.   Halıcıoğlu, S. and Harmancı, A.,  “The Direct Sum Order in Regular Modules”, J. Algebra Appl. 19(09)(2020), 2050178.

-Calci, M. B. Halıcıoğlu, S. Harmanci, A. and Ungor, B. “Prime Structures in a Morita Context”, Bol. Soc. Mat. Mex. (3) 26 (2020),  991–1001.

-Calci, T.  Chen, H. Halıcıoğlu, S. and Shile, G. “Linear maps preserving Drazin inverses of matrices over local rings”, appears in  Revista de la Unión Matemática Argentina.

ORCID ID: https://orcid.org/0000-0003-0792-1868
SCOPUS AUTHOR ID: https://www.scopus.com/authid/detail.uri?authorId=8412350200
WOS RESEARCHER ID: https://publons.com/researcher/3377932/sait-halicioglu/
CITATIONS:  https://scholar.google.com/citations?user=7M0d_6AAAAAJ&hl=en