PROF.DR. SAİT HALICIOĞLU    
Name : SAİT
Surname : HALICIOĞLU
E-Mail : halici@ankara.edu.tr, saithalicioglu@gmail.com
Phone Number : 0312 212 67 20 Ext 1190
Title : PROF.DR.
Unit : FACULTY OF SCIENCES
Department : DEPARTMENT OF MATHEMATICS
Personal Information

 


Sait  HALICIOĞLU 

Contact information: Ankara University

Department of Mathematics

06100 Tandoğan Ankara TURKEY

Tel:  0 312 212 67 20 /11 90

Fax: 0 312 223 50 00

Email: halici@ankara.edu.tr

EDUCATION

BSc: 1978 - 1982, Ankara University,  Department of Mathematics

MSc: 1984 - 1986, Gazi University,  Department of Mathematics

Advisor: Professor Abdullah Harmanci

Title of the thesis:  Schur Index

PhD: 1988-1992, University of Wales-Aberystwyth, Department of Mathematics

Advisor: Professor A.O. Morris

Title of the thesis:  The Representations of Weyl Groups

Associate Professor:November 1994, AnkaraUniversity, Department of

Mathematics 

 

Professor:  April 2000, Ankara University, Department of Mathematics       



AREA OF INTEREST

Representation Theory-Ring and Module Theory:
 
Representations of symmetric groups

Representations of Weyl groups

Representations of finite reflection groups

Specht modules

Reduced rings and modules

Symmetric rings and modules

Reversible rings

Semicommutative rings and modules

Abelian rings and modules

Armendariz rings and modules

Clean rings and modules

Baer rings and modules

Rickart rings and modules

Principally Projective rings and modules

Principally Quasi-Baer rings and modules

Rigid rings and modules
 

PUBLICATIONS

-Halıcıoğlu, S. "Perfect Systems in G_2",  Riv. Mat. Univ. Parma, 5(2):237-247, 1993.

-Halıcıoğlu, S. and Morris, A.O.  "Specht Modules for Weyl groups", Contributions to Algebra and Geometry, 34(2): 257-276, 1993.

-Halıcıoğlu, S. "Additional Specht Modules for Weyl Groups", Hacettepe Bull. Nat. Sci. Eng. , (23): 23-29, 1994.

-Halıcıoğlu, S.  "A Basis for Specht Modules for Weyl Groups", Turkish J.Math.,18(3): 311-326, 1994.

-Halıcıoğlu, S.  "The Garnir Relations for Weyl Groups", Math.Japon. 40(2):339-342,1994.

-Halıcıoğlu, S. "Extended subsystems of root systems", Turkish J.Math., 19(1): 62-67, 1995.

-Halıcıoğlu, S.  "Specht Modules for Finite Reflection Groups", Glasgow Math.J., 37(3): 279-287, 1995.

-Halıcıoğlu, S.  "Submodules of Specht Modules for Weyl Groups", Proc. Edinburgh Math. Soc. 39(1): 43-50, 1996.

-Halıcıoğlu, S.  "Specht Modules for Finite Groups", Math. Slovaca, 49 (4), 425-431, 1999.

-Halıcıoğlu, S.  "Grup Gösterimleri I", A.Ü.Fen Fak Dön. Ser. İşl. Yay. No:52, 1999.

-Başer, M. and Halıcıoğlu, S.  "The representations of finite reflection groups", Mat. Vesnik, 56 (3-4), 105-114, 2004.

-Agayev, N.  Halıcıoğlu, S. and Harmanci, A., "On symmetric modules", Riv.Mat.Univ.Parma (8) 2 (2009), 91-99.

-Agayev,N.  Harmanci, A. and Halıcıoğlu, S. " Extended Armendariz Rings", Algebras Groups Geom., 26(4)(2009), 343-354.

-Agayev,N.  Güngöroğlu, G.  Harmanci, A. and Halıcıoğlu, S., "Abelian Modules", Acta Math. Univ. Comeninae, 8(2)(2009), 235-244.

-Agayev,N.  Halıcıoğlu, S. and Harmanci, A. " On Reduced Modules",  Commun. Fac. Sci. Univ. Ank. Series A1, 58(1)(2009), 9-16.

-Inankil, H. Halıcıoğlu, S. and Harmanci, A. " On a Class of Lifting Modules", Vietnam J. Math., 38:2(2010), 189-201.

-Agayev,N.  Harmanci, A. and Halıcıoğlu, S. " On Abelian Rings", Turk. J. Math., 34, (2010), 465-474.

-Agayev, N.  Güngöroğlu, G.  Harmanci, A. and Halıcıoğlu, S. "Central Armendariz Rings", Bull. Malays. Math. Sci. Soc. (2) 34(1) (2011), 137-145.

-Inankil, H., Halıcıoğlu, S. and Harmanci, A., " A Generalization of Supplemented Modules", Algebra Discrete Math., 11(1)(2011), 59-74.

-Ungor, B., Agayev, N., Halıcıoğlu, S. and Harmanci, A., " On Principally Quasi-Baer Modules", Albanian J. Math. 5(3) (2011), 165-173.

-Kafkas, G., Ungor, B, Halıcıoğlu, S. and Harmanci, A., " A Generalization of Symmetric Rings", Algebra Discrete Math., 12(2)(2011), 72-84.

-Ungor, B., Halıcıoğlu, S. and Harmanci, A., " Extensions of Baer and Principally Projective Modules", GU J Sci., 25(4)(2012), 863-867.

-Agayev, N., Halıcıoğlu, S. and Harmanci, A., " On Rickart Modules", Bulletin of the Iranian Mathematical Society, 38(2) (2012), 433-445.

-Kose, H., Ungor, B and Halıcıoğlu, S., "A Generalization of Reduced Rings", Hacet. J. Math. Stat., 41 (5) (2012), 689-696.

-Ungor, B, Kafkas, G., Halıcıoğlu, S. and Harmanci, "Some Properties of Rickart Modules", Commun. Fac. Sci. Univ. Ank. Series A1, 61(2)(2012), 1-8.

-Ungor, B., Kurtulmaz, Y.., Halıcıoğlu, S. and Harmanci, A., " Dual $pi$-Rickart Modules", Revista Colombiana de Matemáticas, (46) (2) (2012), 167-180.

-Arıkan, A. ve Halıcıoğlu, S., "Soyut Matematik", Palme Yayınları, Ankara, 2012.

-Ungor, B., Halıcıoğlu, S., Kamal M. A. and Harmanci, A., " Strongly Large Module Extensions", An. Ştiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 59(2) (2013), 431-452.

-Ungor, B and Halıcıoğlu, S., " Strongly Extending Modules", Hacet. J. Math. Stat., 42 (5) (2013), 465-478.

-Gurgun, O., Halıcıoğlu, S. and Harmanci, A., "Quasipolar Subrings of 3x3 Matrix Rings", An. S t. Univ. Ovidius Constanta, 21(3)(2013), 133-146.

-Kose, H., Ungor, B and Halıcıoğlu, S. and Harmanci, A. "Quasi-Reduced Rings", Acta Univ. Apulensis Math. Inform., 34 (2013), 57-68.

-Ungor, B, Halıcıoğlu, S., Kose, H. and Harmanci, A. "Rings in which every nilpotent is central", Algebras Groups Geom., 30(1)(2013), 1-18.

-Ungor, B., Agayev, N., Halıcıoğlu, S. and Harmanci, A., "Endo-Principally Projective Modules", Novi Sad J. Math., 43(1)(2013), 41-49.

-Ungor,B., Kurtulmaz Y., Halıcıoğlu,S. and  Harmancı, A. "On Generalized Principally Quasi-Baer Modules", Bol. Mat. 20(1) (2013), 51--62.

-Buhphang, A.M., Halıcıoğlu, S., Harmanci, A., Singh, K.H., Kose, H.Y. and Rege, M.B., "On Rigid Modules", East-West J. of Mathematics, 15(1) (2013), 71-85.

-Ungor, B., Halıcıoğlu, S. and Harmanci, A., "On A Class of -Supplemented Modules",   Bull. Malays. Math. Sci. Soc. (2) 37(3) (2014), 703–717

-Ungor, B.  Halıcıoğlu, S.  Harmanci;A.  “A Generalization of Rickart Modules”, Bull. Belg. Math. Soc. Simon Stevin , 21 (2) (2014), 303-318.

-Ungor, B., Halıcıoğlu, S. and Harmanci, A., "On a Class of -Supplemented Modules", in Ring Theory and Its Applications, Contemporary Mathematics, vol. 609, Amer. Math. Soc., Providence, RI, 2014, pp. 123-136.

-Kose, H., Ungor, B and Halıcıoğlu, S. and Harmanci, A. " A Generalization of Reversible Rings", Iran. J. Sci. Technol. Trans. A Sci.,  38(1)(2014) 38, 43-48.

-Halıcıoğlu, S.  Gurgun,O. and  Harmanci, A.  “Nil-quasipolar Rings”, Boletín de la Sociedad Matemática Mexicana,  20(1)(2014), 29-38.

-Halıcıoğlu, S.  Gurgun, O.  and Harmanci, A.  “Strong J-cleanness of formal matrix rings”,  Advanced Studies in Contemporary Mathematics (Kyungshang),, 24(4)(2014), 483-498.

-Argün, Z; Arıkan, A.; Bulut S. ve Halıcıoğlu, S., "Temel Matematik Kavramların Künyesi", Gazi Kitabevi, Ankara, 2014.

-Guner, E. and Halıcıoğlu, S. “Generalized Rigid Modules”, Revista Colombiana de Matemáticas, (48) (1) (2014), 111-123.

-Ungor, B.,  Gurgun, O., Halıcıoğlu, S. and Harmanci, A., "Feckly Reduced Rings", Hacet. J. Math. Stat., 44 (2) (2015), 375 – 384.

-Arıkan, A. ve Halıcıoğlu, S., "Cebire Giriş",  Palme Yayınları, Ankara, 2015.

-Agayev, N., Halıcıoğlu, S. and Harmanci, A.,  Ungor, B.,  "Modules which are Reduced over their Endomorphism Rings",  Thai Journal of Mathematics, 13(1) (2015), 177–188.

-Ungor, B., Kurtulmaz, Y.., Halıcıoğlu, S. and Harmanci, A., "Symmetric modules over their endomorphism rings",  Algebra Discrete Math. 19(2)(2015), 283-294.

-Gürgün, O. Halıcıoğlu, S. and Üngör, B. “A Subclass of Strongly Clean Rings”, Commun. Math. 23(2015), 13-31.

-Ungor, B., Halıcıoğlu, S. and Harmanci, A., “Rickart modules relative to singular submodule and dual Goldie torsion theory”, J. Algebra Appl., 15(8)(2016), 1650142.

-Chen, H.  Gurgun, O.  Halıcıoğlu, S. and Harmanci, A. “Rings in which nilpotents belong to Jacobson radical”, An. Ştiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.)  LXII(2) (2016), 595-606.

-Ungor, B.   Halıcıoğlu, S.  and Harmancı,, A. “Modules in which Inverse Images of Some Submodules are Direct Summands”,  Communications in Algebra, 44(4)(2016),1496-1513.

-Ungor, B. Chen, H.  and Halıcıoğlu, S.  “Very Clean Matrices over Local Rings”, appears in An. Ştiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.)

-Calci, M. Halıcıoğlu, S. and Harmanci, A. “A Class of J-quasipolar Rings”, Journal of Algebra and Related Topics, Vol. 3, No 2, (2015), pp 1-15

-Calci, T. Halıcıoğlu, S. and Harmanci, A. “A Generalization of J-quasipolar Rings”, appears in Miskolc Mathematical Notes.

-Chen, H.  Kose,H. and  Halıcıoğlu, S.  “Decomposition of 2x2 matrices over local ringsl”, Publications de l'Institut Mathematique, 100(114) (2016), 287–298 DOI: 10.2298/PIM1614287C

Citations:  https://scholar.google.com.tr/citations?user=7M0d_6AAAAAJ&hl=tr